A study of open-charmed hadrons in p-p collisions using machine learning methods

Based on:

Machine learning-based study of open-charm hadrons in proton-proton collisions at the Large Hadron Collider K. Goswami, S. Prasad, N. Mallick, R. Sahoo, and G. Mohanty Phys Rev D 110 034017 (2024)

Kangkan Goswami Department of Physics Indian Institute of Technology Indore

Outline

- Introduction
- Motivation
- Machine Learning Models
- Input Feature and training details
- Results
- Summary

Introduction

Under high temperature and high baryon density, a deconfined medium of thermalized quarks and gluons is predicted. It is termed as **Quark-Gluon Plasma (QGP)**

Source: Quark Matter 2018, <u>http://scienzapertutti.infn.it.</u>, Quark Gluon Plasma, <u>http://hep.itp.tuwien.ac.at/~ipp/qgp.html</u>,

Producing Quark-Gluon Plasma in laboratory

Sketch of relativistic heavy-ion collisions, Chun Shen, Ohio State University

Motivation

- > To understand the medium formed in an ultra-relativistic heavy ion collision
- Heavy quarks as probe
 - Formed initially in the system
 - Mass >> Temperature of the medium
- Brownian Motion:
 - > Charm quarks are much heavier than the constituent of the QGP medium, i.e. u, d, and s quarks
 - D Meson are relatively heavier than the major constituent of the hadronic medium, i.e. pion, kaon, and proton
- Can give us information about the medium through its study of the diffusion of heavy quarks and heavy-flavor hadrons
- > This information can't be observed directly in experiments
- > However, in principle this should affect experimental observables such as, elliptic flow (v_2) and nuclear modification factor (R_{AA})

D. Kazakov, Phys. Usp. 57, 930 (2014)

Source: Brownian motion, Wikipedia

Motivation

ALICE Collaboration, EPJC 83 1123 (2023)

However, to study the charm sector in experiment, we need to separate the contribution coming from beauty sector (i.e., Nonprompt D meson)

ALICE Collaboration, JHEP 12, 126 (2022).

Motivation

Prompt and non-prompt D^0 mesons: ML Approach

Machine Learning Algorithms used:

- 1. Extreme Gradient Boost (XGBoost)
- 2. Categorical Boosting (CatBoost)
- 3. Random Forest

- 1. Invariant Mass
- 2. The pseudo-proper time:
- 3. Pseudo-proper decay length:
- 4. Distance of closes approach:

 $DCA_{D^0} = L \times \sin \theta$

Input features

Input Variables

3.

- Invariant Mass 1.
- The pseudo-proper time: 2.
- $t_z = \frac{(z_{D^0} z_{PV}) \times m_{D^0}}{z_{PV}}$ $cm_{D^0} \vec{L}. \overrightarrow{p_T}$ Pseudo-proper decay length: $c\tau =$ p_T^2 $DCA_{D^0} = L \times \sin \theta$ \vec{L} is the vector pointing from the primary vertex towards D^0
- Distance of closes approach: 4.
 - decay vertex, i.e. $\vec{L} = \vec{V} \vec{S}$ \vec{V} is the position of the primary vertex and \vec{S} is the position of the D^0 decay vertex given by,

$$S_{i} = \frac{(t_{1} + d_{i,1}m_{1}/p_{i,1}) - (t_{2} + d_{i,2}m_{2}/p_{i,2})}{m_{1}/p_{i,1} - m_{2}/p_{i,2}}$$

K. Goswami et al., Phys. Rev. D 110, 034017 (2024)

Machine Learning Algorithms: Detailed explanation

- Extreme Gradient Boost (XGBoost): Combines the predictions of multiple weak models to produce a stronger model.
- Categorical Boosting (CatBoost): Similar working principle as XGBoost but faster and more efficient when working with categorical data.
- Random Forest: In a Random Forest classifier, multiple decision trees are created, each on a different subset of the data. Each tree gets a vote on the class label for a new instance. The class that gets the most votes is chosen as the final prediction.

Our model shows an accuracy of 99% in separating prompt and non-prompt D⁰ meson

Random Forest Classifier Architecture

9-Dec-24

Results: Predicted p_T spectra

- Model trained: *pp* collision, using data simulated in PYTHIA8
 - $\sqrt{s} = 13 \text{ TeV}$
- Predicted data: pp collision,
 √s = 13, 5.02, and 0.9 TeV
- ML Algorithms \Leftrightarrow Monte Carlo
- MLhad: The Machine Learning for Hadronization collaboration (MLhad) seeks to design and deploy datadriven empirical hadronization models by extracting essential features directly from the wealth of available experimental data.

Source: https://uchep.gitlab.io/mlhad-docs/

Results: Predicted rapidity spectra

- Model trained: *pp* collision, using data simulated in PYTHIA8
 - $\sqrt{s} = 13 \text{ TeV}$
- Predicted data: *pp* collision,
 √s = 13, 5.02, and 0.9 TeV
- ML Algorithms \Leftrightarrow Monte Carlo
- MLhad: The Machine Learning for Hadronization collaboration (MLhad) seeks to design and deploy datadriven empirical hadronization models by extracting essential features directly from the wealth of available experimental data.

Source: <u>https://uchep.gitlab.io/mlhad-docs/</u>

Results

Comparison with ALICE experimental data:

K. Goswami et al., Phys. Rev. D **110**, 034017 (2024) ALICE Collaboration, JHEP **05**, 220 (2021) ALICE Collaboration, JHEP **10**, 110 (2024)

- > Non-prompt to prompt D^0 meson ratio
- > Non-prompt D^0 meson Yield at $\sqrt{s} = 13$ TeV to $\sqrt{s} = 5.02$ TeV
- > We underestimate the results slightly, in both cases. However, shows the same trend as experimental data

Results

> Non-prompt to prompt D^0 meson ratio at different center-of-mass energy

- > Charmonium (J/ψ) to Open charm (D^0) yield ratio as a function of transverse momentum and charged particle multiplicity
 - > The non-prompt ratio exceeds unity as a function of p_T , which hints towards a higher feedback of the beauty hadrons into charmonium states as compared to the D⁰ meson

- > We train three different machine learning model, XGBoost, CatBoost, and Random Forest, for *pp* collision at $\sqrt{s} = 13$ TeV
- > We predict the data for pp collision at $\sqrt{s} = 13$, 5.02, and 0.9 TeV
- > We plot the non-prompt to prompt D^0 meson ratio and yield at different COM energies and compare our results with ALICE data
- \blacktriangleright We plot J/ψ to D^0 meson ratio as a function of transverse momenta and multiplicity
- \succ We study the self-normalized yield of D^0 meson at three different center-of-mass energy

ACCELERATING SCIENCE